

<u>Informations concernant l'épreuve</u>

Barème et mode de calcul note finale	1 point par question
Durée	1h30
Calculette autorisée	NON
Consignes pour les candidats	Merci de ne rien marquer sur le sujet
	Pour chaque question de l'épreuve, une seule bonne
	réponse possible
	Répondez sur la grille séparée
	Seules les grilles correctement remplies seront corrigées

NB.: Dans cette épreuve, on demande d'indiquer, pour chaque question, la bonne réponse parmi celles qui sont proposées.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Certaines questions sont dépendantes. Le sujet comporte deux niveaux de questions :

- 1. des questions d'applications du cours : 1-2-3-9-11-12-13-14-16-17-18-19-20-22-23-24-29-30
- 2. des questions nécessitant plus de réflexion : 4-5-6-7-8-10-15-21-25-26-27-28

Partie I

On considère sur $\mathbb R$ les équations différentielles suivantes :

-
$$y'' + 4y' + 5y = 0$$
, notée (H),
- $y'' + 4y' + 5y = (4t + 2)e^{-t}$, notée (E).

- 1) La solution générale de (H) est la fonction suivante, où A et B sont des constantes réelles :
 - A) $t \mapsto y = e^{-t} (A \cos(t) + B \sin(t)),$
 - B) $t \mapsto y = e^{-t} (A\cos(2t) + B\sin(2t)),$
 - C) $t \mapsto y = Ae^{-2t}\cos(t)$,
 - D) $t \mapsto y = e^{-2t} (A \cos(t) + B \sin(t)).$
- 2) La solution de (H) vérifiant les relations y(0) = 1 et y'(0) = -3 est la fonction suivante, notée f, telle que :
 - A) $f(t) = e^{-t}(\cos(t) + \sin(t)),$
 - B) $f(t) = e^{-2t}(\cos(2t) + \sin(2t)),$
 - C) $f(t) = e^{-2t}(\cos(t) \sin(t)),$
 - D) $f(t) = e^{-t}(\cos(2t) \sin(2t))$.
- 3) Pour t réel, la quantité f(t) a pour expression :
 - A) $\sqrt{2}e^{-2t}\cos\left(t+\frac{\pi}{4}\right)$,
 - B) $\sqrt{2}e^{-2t}\cos\left(t-\frac{\pi}{4}\right)$,
 - C) $\sqrt{2}e^{-t}\cos\left(t-\frac{\pi}{2}\right)$,
 - D) $\sqrt{2}e^{-t}\cos\left(t-\frac{\pi}{4}\right)$.
- 4) Sur \mathbb{R}_+ , l'ensemble des points en lesquels la fonction fs'annule est caractérisé par :

 - A) $t_k = \frac{\pi}{4} + 2k\pi, k \in \mathbb{N},$ B) $t_k = -\frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{N},$

- C) $t_k = \frac{\pi}{4} + k\pi, k \in \mathbb{N},$ D) $t_k = -\frac{\pi}{4} + k\pi, k \in \mathbb{N}.$
- 5) L'équation différentielle (E) admet une solution particulière y_p telle que :
 - A) $y_p(t) = (2t+1)e^{-t}$,
 - B) $y_p(t) = (2t 1)e^{-t}$,
 - C) $y_p(t) = (2t+1)e^{-2t}$
 - D) $y_p(t) = (2t 1)e^{-2t}$.
- 6) La solution de (E) vérifiant les relations y(0) = -1 et y'(0) = 2 est la fonction suivante, notée g, telle que :
 - A) $g(t) = (2t+1)e^{-2t} + e^{-t}\cos(t)$,
 - B) $g(t) = (2t+1)e^{-2t} e^{-t}\cos(t)$,
 - C) $g(t) = (2t-1)e^{-t} + e^{-2t}\sin(t)$,
 - D) $g(t) = (2t 1)e^{-t} e^{-2t}\sin(t)$.
- 7) Soit la fonction h définie sur \mathbb{R} par $h(t) = e^t g(t)$. Alors, lorsque t tend vers $+\infty$:
 - A) h ne possède aucune limite,
 - B) h tend vers une limite réelle,
 - C) h tend vers $-\infty$,
 - D) h tend vers $+\infty$.

2

Partie II

Dans les questions 8) à 15), on considère la fonction f définie sur \mathbb{R} par $x \mapsto f(x) = \frac{e^{-3x}+1}{e^{-2x}+1}$ Pour X réel positif, on définit $I(X) = \int_0^X f(x) dx$.

- 8) En posant $u = e^x$, on écrit $I(X) = J(U) = \int_1^U g(u) du$, où $U = e^X$ et où le réel g(u) est donné par :
 - A)
 - $\overline{u(1+u^2)}$
- 9) $\forall u \in [1, U]$:
 - A) $2 \le 1 + u^3 \le 1 + u^2$,
 - B) $2 \le 1 + u^2 \le 1 + u^3$,
 - C) $1 + u^2 \le 1 + u^3 \le 2$,
 - D) $1 + u^3 \le 1 + u^2 \le 2$.
- 10) D'après l'encadrement précédent, on peut déduire que l'intégrale $I(\ln(2))$ appartient à l'intervalle :
 - A) [3/2,2],
 - B) [1,3/2],
 - C) [1/2,1],
 - D) [0,1/2].
- 11) Pour tout réel u de [1, U], le réel $\frac{1+u^3}{1+u^2}$ est égal à :

- 12) Le réel Arctan(1) vaut :

 - C) D)
- 13) Une primitive de la fonction $f_1: u \mapsto f_1(u) = \frac{u}{1+u^2}$ est donnée par F_1 avec :
 - A) $F_1(u) = \frac{1}{2} Arctan(u)$, B) $F_1(u) = ln(1 + u^2)$, C) $F_1(u) = \frac{1}{2} ln(1 + u^2)$, D) $F_1(u) = Arctan(1 + u^2)$.
- 14) Une primitive de la fonction $f_2: u \mapsto f_2(u) = \frac{1}{1+u^2}$ est donnée par F_2 avec :
 - A) $F_2(u) = Arctan(1 + u^2)$,
 - B) $F_2(u) = Arctan(u)$,
 - C) $F_2(u) = \frac{1}{2}ln(1+u^2)$, D) $F_2(u) = ln(1+u^2)$.
- 15) L'intégrale $I(\ln(2))$ vaut :

 - A) $\frac{1}{2} + \frac{\pi}{4} Arctan(2) + \frac{1}{2}ln(5/2),$ B) $-\frac{1}{2} Arctan(2) + \frac{1}{2}ln(5/2),$ C) $\frac{1}{2} \frac{\pi}{4} + Arctan(2),$ D) $-\frac{1}{2} \frac{\pi}{4} Arctan(2) + \frac{1}{2}ln(5/2).$

Partie III

Dans les questions 16) à 30), on considère :

- un espace vectoriel E muni d'une base $B_0 = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$,
- les applications linéaires g, h, et f=-g+2h, de E dans E, représentées dans la base B_0 par les matrices respectives B, C et A,
- la matrice I, matrice identité de dimension 3,
- les matrices $B = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}$, et A = -B + 2C.
- 16) On a respectivement:
 - A) $B^2 = I \text{ et } C^2 = C$,
 - B) $B^2 = -B$ et $C^2 = -C$,
 - C) $B^2 = B$ et $C^2 = C$,
 - D) $B^2 = 0$ et $C^2 = I$.
- 17) On a respectivement:
 - A) BC = I et CB = 0,
 - B) $BC = B \ et \ CB = C$,
 - C) BC = 0 et CB = B,
 - D) $BC = 0 \ et \ CB = 0$.
- 18) La matrice C est de rang :
 - A) 0,
 - B) 1,
 - C) 2,
 - D) 3.
- 19) Dans la base B_0 , l'application f est représentée par la matrice A, qui vaut :
- 20) La matrice A^2 a pour expression :
 - A) 4C B,
 - B) 4C + B,
 - C) -4C B
 - D) -4C + B.
- 21) Pour n entier naturel non nul, la matrice A^n a pour expression:
 - A) $2^nC (-1)^nB$,
 - B) $-2^{n}C + (-1)^{n}B$,
 - C) $2^nC + (-1)^nB$,
 - D) $(-1)^n C + 2^n B$.

- 22) Le vecteur $h(\overrightarrow{e_2})$ vaut :
 - A) $-\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}$,
 - B) $\overrightarrow{e_1} \overrightarrow{e_2} \overrightarrow{e_3}$, C) $\overrightarrow{e_1} \overrightarrow{e_2} + \overrightarrow{e_3}$, D) $-\overrightarrow{e_1} + \overrightarrow{e_2} \overrightarrow{e_3}$.
- 23) Soient les vecteurs $\vec{u} \in E$ et $\vec{v} = h(\vec{u})$. On note (u_1, u_2, u_3) et (v_1, v_2, v_3) composantes respectives de \vec{u} et \vec{v} dans la base B_0 . Alors la quantité v_2 vaut :
 - A) $u_1 + u_2 + u_3$,
 - B) $-u_1 + u_2 + u_3$
 - C) $u_1 u_2 u_3$,
 - D) $-u_1 + u_2 u_3$.
- 24) Le déterminant de la matrice A vaut :
 - A) 2,
 - B) -1,
 - C) 0,
 - D) -2.
- 25) Soit P_A le polynôme caractéristique de la matrice A, défini par $P_A(\lambda) = det(A - \lambda I)$. La quantité $P_A(\lambda)$ a pour expression :
 - A) $(1+\lambda)\begin{vmatrix} 2-\lambda & -3 & 3 \\ -3 & 2-\lambda & -3 \\ 1 & 0 & 1 \\ 2-\lambda & -3 & 3 \\ -3 & 2-\lambda & -3 \\ 0 & 1 & -1 \\ 2-\lambda & 1 & 3 \\ -3 & -1 & -3 \\ -3 & 0 & -4-\lambda \\ 0 & 1 & -1 \\ -3 & 3 & -1 \end{vmatrix}$ D) $(-1-\lambda)\begin{vmatrix} 2-\lambda & 1 & 3 \\ -3 & -1 & -3 \\ -3 & 2-\lambda & -1 \\ -3 & 3 & -1 \end{vmatrix}$

- 26) La matrice A possède :
 - A) Une valeur propre double $\lambda_1=-1$ et une valeur propre simple $\lambda_2=2$,
 - B) Une valeur propre simple $\lambda_1 = -1$ et une valeur propre double $\lambda_2 = 2$,
 - C) Une valeur propre double $\lambda_1=-1$ et une valeur propre simple $\lambda_2=0$,
 - D) Une valeur propre simple $\lambda_1=-1$ et une valeur propre double $\lambda_2=0$.

On donne les vecteurs : $v_1=(1,1,0),\ v_2=(0,1,0),\ v_3=(1,0,-1),\ v_4=(-1,1,1).$

- 27) Pour la valeur propre simple de A, dans la liste de vecteurs $\{v_1, v_2, v_3, v_4\}$, un vecteur propre est :
 - A) v_1 ,
 - B) v_2 ,
 - C) v_3 ,
 - D) v_4 .
- 28) Pour la valeur propre double de A, dans la liste de vecteurs $\{v_1, v_2, v_3, v_4\}$:
 - A) v_1 et v_2 sont des vecteurs propres,
 - B) v_1 et v_3 sont des vecteurs propres,
 - C) v_3 est le seul vecteur propre,
 - D) v_4 est le seul vecteur propre.

Il est admis que la matrice A est diagonalisable dans \mathbb{R} . Soit D une matrice semblable à A, et P la matrice de passage de la base B_0 à la base propre associée à D.

- 29) La relation suivante est alors vérifiée :
 - A) $A = P^{-1}.D.P$,
 - B) $A = P.D.P^{-1}$
 - C) $A = P^{-1}.D.P^{-1}$
 - D) A = P.D.P.
- 30) Dans l'écriture de la question précédente :
 - A) Les matrices D et P sont uniques,
 - B) Une permutation des colonnes de *P* est possible sans modifier *D*,
 - C) Une permutation des termes diagonaux de *D* est possible sans modifier les colonnes de *P*,
 - D) Une permutation des termes diagonaux de *D* s'accompagne d'une permutation des colonnes de *P*.

Thématiques couvertes

Outils de base

- Trigonométrie
- Inégalités dans ${\mathbb R}$
- Suites numériques (convergence)
- Sommation discrète

Analyse, fonctions de $\mathbb R$ dans $\mathbb R$

- Limites, continuité, dérivabilité
- Sens de variation
- Intégration sur un intervalle
- Equations différentielles ordinaires
- Solution générale, solution particulière
- Equations différentielles linéaires à coefficients constants,

Algèbre linéaire

- Espaces vectoriels
- Dimension finie
- Applications linéaires, sous espaces vectoriels associés

Algèbre matricielle

- Matrices et applications linéaires
- Opérations élémentaires
- Déterminants
- Diagonalisation

Nom et Prénom

Feuille de réponses :

Réponses aux questions d'applications directes	Réponses aux questions avancées
Question 1 : A □ B □ C □ D □	
Question 2 : $A \square B \square C \square D \square$	
Question 3 : $A \square B \square C \square D \square$	
	Question 4: A \square B \square C \square D \square
	Question 5: A \square B \square C \square D \square
	Question 6: A \square B \square C \square D \square
	Question 7: A \square B \square C \square D \square
	Question 8 : A \square B \square C \square D \square
Question 9 : A □ B □ C □ D □	
	Question 10: A \square B \square C \square D \square
Question 11: A □ B □ C □ D □	
Question 12: $A \square B \square C \square D \square$	
Question 13: $A \square B \square C \square D \square$	
Question 14: $A \square B \square C \square D \square$	
	Question 15: A \square B \square C \square D \square
Question 16: A □ B □ C □ D □	
Question 17: $A \square B \square C \square D \square$	
Question 18: $A \square B \square C \square D \square$	
Question 19: $A \square B \square C \square D \square$	
Question 20: $A \square B \square C \square D \square$	
	Question 21: A □ B □ C □ D □
Question 22: A □ B □ C □ D □	
Question 23: $A \square B \square C \square D \square$	
Question 24: $A \square B \square C \square D \square$	
	Question 25: A □ B □ C □ D □
	Question 26: $A \square B \square C \square D \square$
	Question 27: $A \square B \square C \square D \square$
	Question 28: A \square B \square C \square D \square
Question 29: A □ B □ C □ D □	
Question 30: $A \square B \square C \square D \square$	
Total 1:	Total 2: